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title: "New analogies between extreme QCD and cold atoms"

abstract:
We discuss two new analogies between extreme QCD and 
cold atoms.  One is the analogue of "hard probes" in cold 
atoms.  The other is the analogue of "quark-hadron continuity" 
in cold atoms.
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1. “Hard probes” in cold atoms

- Using energetic atoms to locally probe
strongly-interacting atomic gases

- Y.N., Phys. Rev. A (2012)  [arXiv : 1110.5926]

2. “Quark-hadron continuity” in cold atoms

- Possible smooth connection
between atoms and trimers
in 3-component Fermi gases

- Y.N., arXiv : 1207.6971
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“Hard probes”

in cold atoms
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• Elliptic flow • Small shear viscosity

• Jet quenching

J. Adams et al., PRL (2003)

η

s
�

1
4π



/ 32xQCD  vs.  cold atoms 5

• Elliptic flow • Small shear viscosity

• Jet quenching
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? ? ?
What is its analogue in cold atoms ?
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Shoot a probe atom into the target atomic gas
and measure its differential scattering rate

What can we learn from the scattering data
on the (strongly-interacting) target atomic gas ? 

target
atomic

gas

θprobe atom
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n-1/3

k-1

Large k >> n1/3  =>  Few-body scattering problems

dΓ(k)
dΩ

= · · ·

Shoot a probe atom into the target atomic gas
and measure its differential scattering rate
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k-1

dΓ(k)
dΩ

= f(θ)
n
k

+ · · ·

Large k >> n1/3  =>  Few-body scattering problems

Shoot a probe atom into the target atomic gas
and measure its differential scattering rate
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k-1

dΓ(k)
dΩ

= f(θ)
n
k

+ g(θ)
C
k2

+ · · ·

Large k >> n1/3  =>  Few-body scattering problems

Shoot a probe atom into the target atomic gas
and measure its differential scattering rate
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R

What is “C” ? 10

Anomalously enhanced probability is
quantified by the “contact density” C

•  noninteracting gas : 

Probability of  finding 2 particles at small separation

•  interacting gas : 

S. Tan, Ann. Phys. (2009);  E. Braaten & L. Platter PRL (2008)

Important characteristic of  strongly-int atomic gases

�n̂(r)n̂(0)� = n2

�n̂(r)n̂(0)� → C
(4π|r|)2

���

|r|<R
�n̂(r)n̂(0)� ∼




n2R3

C R
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•  scattering rate : 

Lowest few Oi are needed at large k

Systematic large-k expansion !

•  optical theorem : 

Γ(k) = −2 ImΣ(k)

Γ(k) =

���
dΩ

dΓ(k)
dΩ

n = �ψ†ψ�, C = �(ψ†ψ)2�, . . .

iG(k) =

���
dxe

ikx �T ψ(x)ψ†(0)�

=
���

i

Ai(k)�Oi�
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dΓ(k)
dΩ

= f(θ)
n
k

+ g(θ)
C
k2

+ · · ·

Many-body physics

Few-body physics

Few-body physics plays an important role
to probe many-body physics !
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Differential scattering rate 13
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forward scattering
(θ < 90°)  only

backward scattering
(θ > 90°)  possible

For zero-range interactions

dΓ(k)
dΩ

= f(θ)
n
k

+ g(θ, k/κ∗)
C
k2

+ · · ·

Efimov effect
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For zero-range interactions

New local probe of  strongly-int atomic gases

Backward scattering rate measures contact density
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B Energy-momentum dispersionA Three-level coupling scheme

C Schematic of scattering halo

!
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Ultracold atom “colliders”

MIT (2011)
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University of  Otago
(New Zeeland)

Optics Letters (2012)

Ultracold atom “colliders”
“A laser based accelerator for ultracold atoms”
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target
atomic

gas

probe atom

- Energetic atoms  =>  New tool to locally
   probe strongly-interacting atomic gases

- Systematic large-k expansions are possible

✓ backward scattering   =>  contact density
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- Close connection to nuclear/particle physics
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- Energetic atoms  =>  New tool to locally
   probe strongly-interacting atomic gases

- Systematic large-k expansions are possible

✓ backward scattering   =>  contact density



/ 32Short summary 1 19

“Hard probes” are
useful to reveal
short-range pair 

correlations
both in nuclei

and atomic gases

- Close connection to nuclear/particle physics
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- Energetic atoms  =>  New tool to locally
   probe strongly-interacting atomic gases

- Systematic large-k expansions are possible

✓ backward scattering   =>  contact density
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“Quark-hadron continuity”

in cold atoms
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f(k) =
−1

ik + 1
a

K. M. O’Hara, New J. Phys. (2011)

• 3 spin states ( i = 1, 2, 3 ) of  6Li atoms
  near a Feshbach resonance :

• a12 = a23 = a31
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• 3 spin states ( i = 1, 2, 3 ) of  6Li atoms
  near a Feshbach resonance :

• a12 = a23 = a31  =>  SU(3) ! U(1) invariance

f(k) =
−1

ik + 1
a

• Problem !  3 fermions form an infinitely deep
bound state  (Thomas collapse)

No many-body ground state  :-(

L = ψ†
i

�
i∂t +

∇2

2m

�
ψi +

g
2
ψ†

iψ
†
jψjψi
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f(k) =
−1

ik + 1
a

• 3 spin states ( i = 1, 2, 3 ) of  6Li atoms
  near a “narrow” Feshbach resonance :

• R regularizes ultraviolet behaviors
  ( =>  no Thomas collapse)

Universal many-body ground state
(depends only on  a, R, kF)

f(k) =
−1

ik + 1
a + Rk2

reff = −2R is the effective range
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+
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Large RkF expansion

Trimer Fermi gas

?
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26Phase diagram
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29Phase diagram
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SF � FSA SF

SF � FST

Trimer FG
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Gapless fermions
are atom-like

(meff ~ m) Gapless fermions
are trimer-like

(meff ~ 3m)
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SF � FSA SF

SF � FST

Trimer FG
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k F

“Atom-trimer continuity” seems to survive
 even when identical fermions form p-wave pairs

New analogy to extreme QCD ?
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Extreme QCD Ultracold atoms

Summary of  this talk

New ideas wanted !


